High Altitude Airport Operations
-
I have a line in the engine.cfg that I've been messing with for awhile. It started pre v0.5 along with probably everything that has been discussed in other threads. Looks like all of which were included in the new flight model of v0.5
;engine_mechanical_efficiency_table=0.000000:0.770000, 700.000000:0.770000, 2000.000000:0.670000, 2200.000000:0.540000, 2700.000000:0.540000 engine_mechanical_efficiency_table=0.000000:0.770000, 700.000000:0.770000, 2000.000000:0.520000, 2200.000000:0.490000, 2500:0.52000, 2700.000000:0.540000
By adding in an extra RPM point and tweaking values, I've gotten pretty close to POH values. And thanks to @BernieV chart up above, greatly reduced to power at 2000 RPM. I've never noticed that before lol Now what I'm not sure about on that band, is where to adjust it to as I have no reference. I'm thinking it needs to come down a bit more as I can match or exceed the speeds of 2200 RPM even though the MP is the same at max throttle.
I've also adjusted fuel_flow_scalar =1.1 ; 1 Now as @Delta558 has pointed out, theres not much you can do with this. Right now its about in a middle ground, little high here, little low there. If i increase a touch to better match the Power cruise settings, it would then be further off from the econ settings.
Here's I chart I made showing the performance. All testing was done at 5000ft, 10 OAT, clear skys, max weight.
-
@weptburrito said in High Altitude Airport Operations:
engine_mechanical_efficiency_table=0.000000:0.770000, 700.000000:0.770000, 2000.000000:0.520000, 2200.000000:0.490000, 2500:0.52000, 2700.000000:0.540000
Nice find. I assume the algo digesting that data set will do a ( linear?) interpolation between data points. Given that the lowest RPM setting the modeled prop governor will restrict to is 1700 RPM (and I have no data from real life to suggest it should do otherwise), perhaps adding values explicitly for 1700 rpm as an anchor to prevent TAS rising as RPM is reduced (via the prop lever) would be helpful. With your new values, the algo is likely interpolating between 2000 and 700 which might result in wonky behavior between 2000 and 1700 RPM (e.g. where 1700 RPM might give you better TAS than 2000). Just a thought after a few glasses of wine last night :)
-
So at the moment I have reduced the 2000 band down to .50. After I let the speed stabilize, reducing the RPM to 2000 I'm still holding the same speed. I'm wondering though if it should reduce some as I did not increase the MP? I then reduced the RPM more, down to as low as it would go, just a hair over 1600 and actually got a 1-2 kt increase? With a small increase in fuel.
I'm assuming that cant be right. I'm also assuming if I drop the 700 band down some, I would then see a drop in speed and FF as like you I'm assuming its linear from point to point. I'll probably do that in a minute just to see what happens. Problem is I'm making a lot of assumptions and just don't know what it SHOULD do. I don't have a chart for reference lol
-
Been tweaking some. This is where I'm at for now. Theory is as long as an increase in MP can be had depending on alt with a decrease in RPM then power/speed should be steady. Problem is I don't know how true this holds IRL at lower RPMs. Theoretical numbers where calculated by seeing around a -100:1 RPM to MP ratio in the 2500/2200 POH values.
engine_mechanical_efficiency_table=0.000000:0.770000, 700.000000:0.660000, 2000.000000:0.460000, 2200.000000:0.490000, 2500:0.52000, 2700.000000:0.540000
-
@BernieV Thanks and please do, would love to hear some feedback. Small warning, I've noticed that it has affected idle rpm, it dropped down around 500. But his can easily be corrected by adjusting as I did
idle_rpm_friction_scalar= 0.6 ; 1
It can also be adjusted with idle_rpm_mechanical_efficiency_scalar, but unfortunately does anyone know what the difference between the 2 are lol
-
Be careful with trying to exactly match the POH Power Setting tables...
https://community.justflight.com/topic/2217/poh-power-setting-table-errors